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Abstract
A new model of dielectric response of disordered substances is proposed.
According to this model, the dielectric response is determined by the Drude
drift currents localized in minima of the random electrostatic potential. The
drift of a charge carrier with mobility μ in local parabolic potential ϕ(x) =
ϕmin + kx2/2 under an external alternating field results in the Debye-type
response with ‘relaxation frequency’ ωr = μk. The use of distribution functions
G(k) for values k of local potential wells of a disordered material allows us to
describe quantitatively both the spectral domains of the ‘nearly constant loss’
and the cases of the giant contribution to a low-frequency dielectric constant.
In disordered substance the response depends mainly on the width but not the
shape of G(k).

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In 1977 Jonscher [1] analysed experimental data on the frequency dependences of the
conductivity of various disordered substances, such as doped crystals with electronic or ionic
conductivity, glasses, polymers, organic acids, and amorphous semiconductors. He has shown
that the real part of the conductivity of all these disordered substances is well described by the
expression σ ′(ω) = σdc[1+(ω/ω0)

s], where σdc is the dc conductivity, s ≈ 0.7±0.2, and ω0 is
a characteristic frequency. Jonscher has named such a kind of frequency response the ‘universal
dielectric response’ (UDR) [1, 2]. Parameters σdc and ω0 exhibit Arrhenius-type temperature
dependences with close activation energies. This indicates that the frequency-dependent
conductivity originates from migration of charge carriers, just the same as the dc conductivity
σdc. In the majority of papers explaining UDR behaviour the models of conductivity are used,
which include jumps of charge carriers over barriers dividing neighbouring vacant possible
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positions in crystalline or amorphous structure (see, for example [2–8]). In a number of papers
the relaxation of an ionic surrounding during a charge motion is also taken into account (see,
for example [9, 10]). The averaging of appropriate probabilities over barrier heights, energies
of possible positions and distances between them allows one to obtain the term (ω/ω0)

s in the
frequency dependence of conductivity.

In 1991 Lee et al [11] showed, with the examples of three ionically conducting crystals and
two glasses, that the exponent s grows monotonically with decreasing temperature and reaches
the limiting value s = 1 at relatively low temperatures. The authors of [11] have labelled this
limiting regime ‘new (second) universality’. Later, in [12–14], it has been shown that the ‘new
universality’ regime is caused by the additional contribution to conductivity, weakly dependent
on temperature. Thus, the conductivity of disordered substances is generally described by the
expression

σ ′(ω) = σdc[1 + (ω/ω0)
s] + Aω1, (1)

where parameter A = A(T ) varies with temperature T weakly as compared to thermally
activated σdc and ω0. The contribution of the term Aω1 to the conductivity dominates at low
temperatures and high frequencies. As the imaginary part of dielectric constant ε′′ (dielectric
loss) is related to the conductivity by the expression ε′′ = σ ′/ε0ω (here ε0 is the permittivity of
free space), the predominance of the ‘new universality’ Aω1 corresponds to the predominance
of a ‘nearly constant loss’ (NCL) regime ε′′(ω) ≈ constant. In the majority of papers the NCL
behaviour is explained with the help of the conductivity model, which describes the motion of
charge carriers in asymmetric double-well potential configurations with a wide distribution of
barrier heights and asymmetry energies [4, 15].

There are, however, models of the conductivity of disordered substances with non-
power law frequency dependence: ‘jump and relaxation’ model [10, 16], ‘random barriers’
model [17], ‘ion motion in decaying cage’ model [18] and ‘effective medium’ model [19]. The
conductivity spectra obtained in these models are described by an apparent power law with
an exponent s(ω, T ), which continuously grows with increase of frequency and decrease of
temperature and reaches the limiting value s = 1. Nevertheless, the spectra of these models
also can be described approximately by using expression (1).

In all the above-mentioned models of conductivity, explaining NCL behaviour, charge
carriers overcome barriers between energy states of microscopic systems of atomic scale by
hopping or by a tunnel effect.

In this paper, in order to explain the NCL regime, we present a simple model based on
classical representations of Drude conductivity in conditions of random electrostatic potential
of a disordered substance. We obtain the dielectric response ‘from first principles’ as the
solution of an equation of motion for charge carriers under the action of an external alternating
field and internal static field of random potential. Within the framework of our model the NCL
regime is accompanied by growth of the real part of dielectric constant ε′(ω) with frequency
decreasing, and ε′ can reach giant values ∼104 in the low-frequency range at moderate values
of substance conductivity.

2. Dielectric response due to Drude drifts of charge carriers localized in random
potential minima of a disordered material

Let us consider a disordered solid-state substance with an average density N of charge
carriers characterized by mobility μ and charge q . The various reasons for disorder can be
chaotically distributed fixed charged impurities, defects and dislocations in dielectrics and
semiconductors, the ‘frozen’ density fluctuations and composition fluctuations in glasses and
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ceramics, domains in ferroelectric materials, etc. These inhomogeneities produce a non-
uniform random distribution of electrostatic potential ϕ(R) in a substance. Here we assume that
ϕ(R) is a function of the radius vector R, slowly varying as compared to the potential bound
to the atomic structure of the substance; that is, in the lack of disorder, ϕ(R) = constant = ϕ0.

According to the definition of mobility, in an electrical field E the drift speed of charge
carriers v = μE. If in a substance in addition to the electrostatic potential ϕ(R) there
is a uniform alternating electrical field E(ω) = E0 exp(−iωt), then E = −grad ϕ(R) +
E0 exp(−iωt) and for the drift velocity of charges v(R) = dR/dt we obtain the equation

dR/dt = μ(−grad ϕ(R) + E0 exp(−iωt)). (2)

Let N1 of the total number N of charge carriers be localized in minima of random potential,
and accordingly N0 = N − N1 carriers remain free, so the dc conductivity of substance
σdc = N0 qμ. It is obvious that N0, N1 and N depend on the temperature T , and at low
enough temperature

T � qϕ̄min/kB, (3)

where kB is the Boltzmann constant and ϕ̄min the average depth of random potential minima
relative to level ϕ0, practically all charge carriers will be localized in potential minima; that is,
N1 ≈ N .

Let the alternating field E(ω) be directed along the x-axis. As a first approximation, it is
possible to consider that near to each local minimum the potential is spherically symmetric and
depends quadratically on the distance from a point of a local minimum. Then for the x-axis
direction we have

ϕ(x) = ϕmin + kx2/2, (4)

where k is a parameter describing the steepness of the local parabolic potential. Then
equation (2) for the charge motion under the action of alternating field E(ω) in such a local
potential takes the form

dx/dt + μkx = μE0 exp(−iωt). (5)

The stationary solution of this equation for the coordinate of a charge is

x(t) = μE0 exp(−iωt)/(μk − iω), (6)

and for a charge velocity we have accordingly

v(t) = −iμE0ω exp(−iωt)/(μk − iω). (7)

If N1 charges are localized in potential minima with equal k, the appropriate current density is
j = N1qv(t) = σ E0 exp(−iωt), whence we obtain for the dynamic conductivity

σ(ω, k) = σ ′(ω, k) + iσ ′′(ω, k) = − iωμq N1

μk − iω
, (8)

σ ′(ω, k) = μω2q N1

(μk)2 + ω2
, (9)

σ ′′(ω, k) = − kμ2ωq N1

(μk)2 + ω2
. (10)

The complex dielectric constant ε(ω, k), related to this dynamic conductivity, is determined by
the known expression

ε(ω, k) = ε′(ω, k) + iε′′(ω, k) = 1 + i
σ(ω, k)

ε0ω
. (11)
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Substituting (8) in (11), we obtain

ε(ω, k) = 1 + μq N1

(μk − iω)ε0
, (12)

ε′(ω, k) = 1 + kμ2q N1

(μ2k2 + ω2)ε0
, (13)

ε′′(ω, k) = μωq N1

(μ2k2 + ω2)ε0
. (14)

Thus, the frequency dependences (12), (13), (14) of the dielectric response, related to the
dynamic Drude conductivity of charge carriers localized in the parabolic potential, are similar
to Debye frequency dependences with ‘frequency of relaxation’ ωr = μk = 1/τr. At this
frequency there is a maximum of the spectrum ε′′(ω, k) and an appropriate ‘step’ in spectrum
ε′(ω, k). When ω � ωr the dielectric constant ε′(ω, k) ≈ ε′(0, k) = 1 + q N1/kε0 does not
depend on the mobility of charge carriers and is determined only by their concentration and the
steepness of the parabolic potential.

Let us evaluate ε′(0, k) for characteristic parameters encountered in experiments. Let the
cyclical relaxation frequency νr = ωr/2π = 106 Hz, q = e = 1.6 × 10−19 C, N1 = 1013 cm−3

and μ = 1000 cm2 V−1 s−1, which corresponds to electron mobility in silicon at T = 300 K.
Then k = ωr/μ ≈ 6300 V cm−2 and ε′(0, k) = 1 + q N1/kε0 ≈ 2900. This estimation shows
that even the small density of charge carriers (which corresponds to Drude conductivity σdc

of order 10−3 	−1 cm−1) in potential wells of an inhomogeneous solid results in a dielectric
response with a giant value of the real part of the low-frequency dielectric constant, which is
characteristic, for example, for relaxors.

We have considered the idealized particular case of a non-uniform medium, when N1

charges are localized in minima of parabolic potentials with equal k. In a disordered non-
uniform medium, these N1 charges will fall into potential minima with various values of the
parabola steepness k. Let the distribution of values k in such substance be characterized by a
probability density g(k), actually describing an ensemble of the forces returning charge carriers
to equilibrium positions. Then for the conductivity and dielectric constant of a disordered
material, the following expressions are valid:

σ ′(ω) =
∫ ∞

0
g(k)σ ′(ω, k) dk + σdc, (15)

σ ′′(ω) =
∫ ∞

0
g(k)σ ′′(ω, k) dk, (16)

ε′(ω) =
∫ ∞

0
g(k)ε′(ω, k) dk, (17)

ε′′(ω) =
∫ ∞

0
g(k)ε′′(ω, k) dk + σdc

ωε0
, (18)

where σ ′(ω, k), σ ′′(ω, k), ε′(ω, k), ε′′(ω, k) are determined accordingly by formulae (9), (10),
(13), (14). For generality, we have added in (15) and (18) the terms stipulated by the dc
conductivity σdc. We shall present a probability density in the form of

g(k) = G(k)∫ ∞
0 G(k) dk

, (19)

where G(k) is an arbitrary non-negative constrained function of k. It is natural to guess that in
a disordered substance the random potential is described by a Gaussian distribution, for which

G(k) = exp

[
− (k − k0)

2

2
2

]
, (20)
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Figure 1. σ ′(ω) spectra calculated for the Gaussian distribution (20) with k0 = 0 (solid curve) and
for triangular (21) and rectangular (22) distributions with k1 = 0 (crosses and circles, respectively).
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Figure 2. ε′(ω) and ε′′(ω) spectra calculated for the Gaussian distribution (20) with k0 = 0 (solid
curve) and for triangular (21) and rectangular (22) distributions with k1 = 0 (crosses and circles,
respectively).

where 
 is the mean-square deviation of k from k0. One can consider that the case of k0 = 0,
when the spatial fluctuations of the random potential are deviations from the potential of the
homogeneous substance ϕ(x) = constant = ϕ0, is the most probable.

We performed the numerical computations of σ ′(ω), ε′(ω) and ε′′(ω), using formulae (9)–
(20) with k0 = 0 and parameters for the substance from the previous estimation: μ =
1000 cm2 V−1 s−1, q = e, N1 = 1013 cm−3 and also 
 = 5030 V cm−2 and σdc =
8×10−10 	−1 cm−1. At such weak dc conductivity N0 = σdc/(qμ) = 5×106 cm−3 � N1; that
is, practically all charge carriers are localized in minima of the random potential. The results of
calculations are shown in figures 1 and 2 by solid curves. The obtained frequency dependence
of the conductivity σ ′(ω) (figure 1) corresponds to the first and third terms of the frequency
dependence (1): σ ′(ω) = constant = σdc at low ω and σ ′(ω) ∼ Aω1 in the frequency range
1 Hz < ω/2π < 106 Hz. Thus, here we have obtained the dependence σ ′(ω), characteristic for
‘new universality’ [11] and corresponding to the frequency area of NCL [12] of the dependence
ε′′(ω) (figure 2). The increase of the curve ε′′(ω) ∼ ω−1 at frequencies below 1 Hz is associated
with the dc conductivity σdc (see (18)); if σdc = 0, then the plateau ε′′ = constant extends up
to the lowest frequencies. The frequency spectrum ε′(ω) of the dielectric constant has a shape
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that is characteristic for relaxors: with decreasing frequency the step ε′ is observed, which
is replaced by a slow monotonic rise near νr = ωr/2π = 1.25μ
/2π = 106 Hz, and the
dielectric constant reaches the giant value ε′ ≈ 50 000 at frequency ν = ω/2π = 10−2 Hz
for the parameters chosen. At frequencies above νr the conductivity σ ′ ceases to depend on the
frequency and the ‘new universality’ is replaced by the plateau σ ′(ω) = constant = σ∞. The
value of the conductivity at this plateau is numerically equal to (N0 + N1)qμ, so all charge
carriers of the substance contribute to the conductivity like free carriers at the frequencies
ω > ωr. The appropriate contribution of these carriers in ε′(ω) sharply diminishes at
ω > ωr and disappears completely at ω/2π = 108 Hz. It is notable that the plateau
σ ′(ω) = constant = σ∞ is also obtained in some ‘hopping’ models of conductivity (see,
for example [4, 7, 9, 10, 16, 17]).

The features of the σ ′(ω), ε′(ω) and ε′′(ω) spectra described above are maintained at
any values of the parameters μ, q , N1, 
 and N0 (for N0 � N1); only the absolute values
of σ ′, ε′, ε′′, which are proportional to q N1, and frequency ωr = 1.25μ
 are changed.
Therefore, for example, the so-called ‘master curve’ [2] is obtained for conductivity σ ′ by
plotting σ ′(ω)/(σ∞ − σdc) versus ω/ωr. Moreover, the σ ′(ω), ε′(ω) and ε′′(ω) spectra do not
depend practically on the shape of the distribution functions G(k) at the given parameters μ,
q , N1 and N0, if the functions G(k) are continuous and distinct from zero starting with k = k1,
have close values of half-width (k2 − k1) and the same values of G(k1) and

∫ ∞
0 G(k) dk. For

example, figures 1 and 2 shows the σ ′(ω), ε′(ω) and ε′′(ω) spectra, calculated for the values μ,
q , N1 and N0 chosen above for the Gaussian distribution (20) with k0 = 0 (solid curves), for
the triangular distribution

G(k) =
{

1 − k/2k2, k1 � k < 2k2,

0, k < k1, k > 2k2,
(21)

where k1 = 0, k2 = 6300 V cm−2 (are shown by crosses), and for the rectangular distribution

G(k) =
{

1, k1 � k < k2,

0, k < k1, k > k2,
(22)

where also k1 = 0, k2 = 6300 V cm−2 (shown by circles). For each of these distributions
G(0) = 1 and

∫ ∞
0 G(k) dk = 6300 V cm−2 (this is fulfilled at k2 − k1 = 


√
π/2 ≈ 1.25
).

The σ ′(ω), ε′(ω) and ε′′(ω) spectra, calculated for all three distributions, practically coincide,
and the frequencies ωr obey the equation

ωr = μk2 = 1.25μ
. (23)

Thus, the frequency ωr is determined by the carrier mobility and the value of the greatest
steepness of local minima of a random potential. Certainly, these spectra are practically
indistinguishable in double logarithmic scale representation, but in linear scale for the y-axes
some differences are appreciable. The maximal difference between the spectra obtained for the
Gaussian (20) and triangular (21) distributions reaches only ∼5%, while for the Gaussian and
rectangular (22) ones it reaches ∼10–20%.

The practical independence of spectra on the shape of distribution G(k) confirms the
adequacy of the considered model of the dielectric response of disordered conducting substance
as it is intuitively clear that processes in a random potential are more likely determined by
boundaries of distribution, its width and an integral over the distribution, than its shape.
Besides, this independence allows using simpler distributions for the spectra modelling, for
example, a rectangular one.

By means of (15)–(19), the spectra of the conductivity and dielectric constant of a
disordered substance in the case of the Gaussian distribution (20) with k0 = 0 are analytically
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expressed through the tabulated error function and exponential integral:

σ ′(ω) =
√

2π

2

N1qω exp

(
ω2

2μ2
2

)(
1 − erf

(
ω

√
2

2μ


))
+ σdc, (24)

ε′′(ω) = σ ′(ω)

ωε0
, (25)

ε′(ω) = 1 + N1q

ε0

√

2π
exp

(
ω2

2μ2
2

)
E1

(
ω2

2μ2
2

)
. (26)

Let us analyse these frequency dependences. At ω � μ
, formula (24) becomes

σ ′(ω) = N1qμ

(√
π

2

ω

μ

− ω2

μ2
2

)
+ O(ω3) + σdc, (27)

the conductivity increases linearly with ω and the proportionality factor is

A = N1q




√
π

2
. (28)

At ω � μ
,

σ ′(ω) = N1qμ

(
1 − μ2
2

ω2

)
+ O(1/ω4) + σdc, (29)

and the conductivity levels off to a plateau σ ′ = N1qμ + N0qμ = Nqμ; that is, all charge
carriers of the substance contribute to the conductivity like free carriers in this frequency region.
According to (25) in the frequency dependence of ε′′(ω) there is a region of NCL and an area
of rise ε′′(ω) with decreasing frequency at ω � μ
, where

ε′′(ω) = N1q

ε0


√
π

2
+ σdc

ε0ω
, (30)

and at ω � μ
 ε′′(ω) drops in inverse proportion to frequency:

ε′′(ω) = N1qμ + σdc

ε0ω
. (31)

Note that the coefficient A and value ε′′ in the NCL region are proportional to the density
of the localized carriers, and inversely proportional to the width of distribution G(k), and do
not depend on carrier mobility. Thus, the NCL regime is entirely stipulated by the steepness
distribution of the relief of the random potential and is not related to the character of the charge
carriers.

The dielectric constant ε′ (26) at ω � μ
 increases logarithmically with decreasing
frequency:

ε′(ω) = 1 + N1q

ε0

√

2π

(
ln

(
2μ2
2

ω2

)
− γ

)
+ O(ω2), (32)

(here γ = 0.577 21 . . . is the Euler constant), and tends to unity at ω � μ
:

ε′(ω) = 1 + N1qμ2

√

2

ε0ω2
√

π
+ O(1/ω4). (33)

Note that the value of ε′ at ω � μ
 is also proportional to N1 and inversely proportional to
the width of the distribution G(k), but weakly depends on the carrier mobility.
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In the case of rectangular distribution (22), the following expressions are obtained by
means of (15)–(19):

σ ′(ω) = N1qω

k2 − k1

[
arctan

(
μk2

ω

)
− arctan

(
μk1

ω

)]
+ σdc, (34)

ε′(ω) = 1 + N1q

2ε0(k2 − k1)
ln

(
ω2 + μ2k2

2

ω2 + μ2k2
1

)
, (35)

and ε′′(ω) is expressed through (34) according to (25). For the case of k1 = 0 at ω � μk2, the
conductivity (34) is a linear function of frequency:

σ ′(ω) ≈ N1qω

k2

π

2
+ σdc. (36)

The proportionality coefficient N1q
k2

π
2 becomes equal to coefficient A (see (28)) for the case of

Gaussian distribution, if k2 = 

√

π/2; that is, at the fulfilment of equality of the integrals∫ ∞
0 G(k) dk for these distributions. At ω � μk2 the conductivity flattens out to the same

plateau, σ ′(ω) = N1qμ + σdc, as in the case of Gaussian distribution. Appropriate regions of
the spectra ε′′(ω) = σ ′(ω)/(ωε0) for the mentioned distributions also coincide.

The real part of the dielectric constant (35) at ω � μk2 and k1 = 0 increases
logarithmically with decreasing frequency. If the equation k2 = 


√
π/2 is fulfilled for the

width parameters of distributions, (35) takes the form

ε′(ω) ≈ 1 + N1q

ε0

√

2π

(
ln

(
2μ2
2

ω2

)
+ ln

(π

4

))
, (37)

coinciding with (32) for the case of Gaussian distribution. At ω � μk2 the dielectric
constant (35) tends to unity.

Thus, the σ ′(ω), ε′(ω) and ε′′(ω) spectra, calculated for Gaussian (20) and rectangular (22)
distributions, coincide in the regions ω � ωr and ω � ωr. At the characteristic frequency
ωr = μk2 = μ


√
π/2 they coincide within 8% for σ ′(ωr) and within 1% for ε′(ωr).

Let us examine now a case when the distribution G(k) begins not with k = 0, but with
k = k1 > 0, so that G(k) = 0 at k < k1 and G(k) > 0 at k > k1. Such distributions can
originate, for example, in substances in which micrograins or microdomains of the restricted
sizes form the random potential. We performed numeric computations of the σ ′(ω), ε′(ω) and
ε′′(ω) spectra for such distributions, using as examples the distributions (20), (21) and (22) with
k0 = k1 = 3 V cm−2 and 1.25
 = k2 − k1 = 6300 V cm−2; that is, the former distributions
shifted along the k-axis by the value k1 = 3 V cm−2. In the calculations, the previous values of
parameters μ, q , N1 and N0 of the substance have been used. The results of the calculations are
shown in figures 3 and 4 by solid lines, crosses and circles for Gaussian (20), triangular (21)
and rectangular (22) distributions, respectively. In these figures again the σ ′(ω), ε′(ω) and
ε′′(ω) spectra, obtained at all three distributions, practically coincide, but the shape of the
spectra has radically changed as compared to the spectra in figures 1 and 2. For the frequency
dependence of conductivity (figure 3), the region where σ ′(ω) = constant = σdc now extends
up to frequencies of ∼10 Hz and passes into the frequency area 15 Hz < ω/2π < 500 Hz,
where σ ′(ω) ∼ ω2. At frequencies above 500 Hz, as before, the conductivity σ ′ is proportional
to ω up to a frequency of ∼106 Hz, and then σ ′(ω) ceases to depend on frequency and its
value at this plateau is numerically equal to σ∞ = (N0 + N1)qμ. Now the NCL region in the
frequency dependence of ε′′(ω) = σ ′(ω)/(ωε0) (figure 4) accordingly occupies frequencies
500–106 Hz, and below 500 Hz ε′′(ω) ∼ ω1 at first, and then below ∼10 Hz, the frequency
dependence is replaced by ε′′(ω) ∼ ω−1. This increase of the curve ε′′(ω) is associated with
the dc conductivity σdc, and if σdc = 0, the dependence ε′′(ω) ∼ ω1 spreads out to the lowest

8
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Figure 3. σ ′(ω) spectra calculated for the Gaussian distribution (20) with k0 = 3 V cm−2 (solid
curve) and for triangular (21) and rectangular (22) distributions with k1 = 3 V cm−2 (crosses and
circles, respectively).
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Figure 4. ε′(ω) and ε′′(ω) spectra calculated for the Gaussian distribution (20) with k0 = 3 V cm−2

(solid curve) and for triangular (21) and rectangular (22) distributions with k1 = 3 V cm−2 (crosses
and circles, respectively).

frequencies. The frequency dependence of the dielectric constant ε′(ω) (figure 4) has, as before,
a step ε′ near the frequency 106 Hz, which is replaced by a slow monotonic increase with
decreasing frequency. However, this increase stops at the level ε′ = constant ≈ 22 000, when
ω/2π � 500 Hz. Thus, at frequencies below 500 Hz the dielectric response is now similar to
the Debye response for frequencies below the Debye relaxation frequency.

Let us analyse the features of the spectra, shown in figures 3 and 4, by means of
expressions (34) and (35) for the case of rectangular distribution G(k). We rewrite (34) in
the form

σ ′(ω) = N1qω

k2 − k1
arctan

[
μk2

ω
− μk1

ω

1 + μk1

ω

μk2

ω

]
+ σdc. (38)

At ω � μk1 < μk2 we have the quadratic dependence of σ ′(ω):

σ ′(ω) ≈ N1qω

k2 − k1
arctan

[
ω(k2 − k1)

μk1k2

]
+ σdc ≈ N1qω2

μk1k2
+ σdc. (39)

9
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At μk1 � ω � μk2 the dependence σ ′(ω) becomes linear:

σ ′(ω) ≈ N1qω

k2
arctan

[
1 − k1

k2

μk1

ω
+ ω

μk2

]
+ σdc ≈ N1qω

k2

π

2
+ σdc. (40)

Note that the last equality is possible only at k1 � k2 and that the linear function (40)
completely coincides with the function (36). Finally, at ω � μk2,

σ ′(ω) ≈ N1qω

k2
arctan

(
μk2

ω

)
+ σdc ≈ N1qμ + σdc; (41)

that is, σ ′ flattens out to the same plateau as in the previous spectra.
Thus, in the frequency range above ω ≈ μk1 the spectra σ ′(ω) and appropriate spectra

ε′′(ω) = σ ′(ω)/(ωε0) for distributions G(k), starting at k = k1 > 0 (k1 � k2), coincide with
spectra σ ′(ω) and ε′′(ω) for distributions G(k), starting at k1 = 0. The frequency band of the
linear increase of σ ′(ω) and the NCL area ranges from ω1 ≈ μk1 up to ω2 ≈ μk2. For the
parameters used in the calculations of the spectra in figures 3 and 4, ω1/2π ≈ 480 Hz and
ω2/2π ≈ 106 Hz, which coincide with bends of the curves. Below ω1 ≈ μk1 the dependence
σ ′(ω) in figure 3 is quadratic according to (39) for distributions G(k), starting at k = k1 > 0.

Expression (35) for ε′(ω) at ω � μk1 < μk2 is reduced to a constant not dependent on
mobility:

ε′(ω) ≈ 1 + N1q

ε0(k2 − k1)
ln

(
k2

k1

)
. (42)

At μk1 � ω � μk2 the dependence ε′(ω) becomes logarithmically decreasing:

ε′(ω) ≈ 1 + N1q

2ε0(k2 − k1)
ln

(
μ2k2

2

ω2

)
, (43)

and at ω � μk2 ε′(ω) = 1. For the parameters used in calculations of spectrum ε′(ω) the
value ε′ = constant = 21 970 is obtained from expression (42); this coincides with the graph
in figure 4.

Thus, we have shown both by means of numeric calculations and analytically that the
type of the dielectric response spectra of disordered conducting medium weakly depends on
the shape of distribution G(k), but to a great extent depends on the positions of the lower k1

and upper k2 boundaries of the distribution. If k1 = 0, the conductivity spectrum will be a
linear function (36) in the frequency band 0 < ω < ωr = μk2 and, accordingly, this band
will be the NCL region for the spectrum ε′′(ω) and the logarithmically decreasing region for
the spectrum ε′(ω). If k1 > 0, and k1 � k2, the frequency dependence of conductivity will
be quadratic (39) at first, and then, at frequencies μk1 < ω < μk2, it will become the same
linear function (36), and at ω > ωr it will flatten out to the same plateau σ∞, as in the case of
k1 = 0. Accordingly, the NCL area of ε′′(ω) and the logarithmically decreasing area of ε′(ω)

now will occupy frequency band μk1 < ω < μk2. Finally, if k1 > 0, and k1 and k2 are of the
same order, then a linear region in the σ ′(ω) spectrum and appropriate areas in the ε′′(ω) and
ε′(ω) spectra will disappear. It is obvious that at k1 > 0 and (k2 − k1)/k1 � 1 the spectra of
the dielectric response are described by the expressions (9), (10), (13), (14) with k = k2 ≈ k1,
that is by ‘Debye’ frequency dependences with ‘relaxation frequency’ ωr = μk.

Thus, our model of Drude drift of the charges localized in minima of the random potential
of a disordered substance describes, at various boundary positions of the distribution function
G(k), both the purely ‘Debye’ dielectric response and responses with NCL behaviour and with
‘giant’ values of a dielectric constant. At the same time the shape of the distribution function of
the minima walls’ steepness weakly influences the dielectric response; it is sufficient that G(k)

10
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is limited. This can be by a natural Gaussian distribution, or even a rectangular distribution,
unlike exotic distribution functions of barrier heights between adjacent minima of potential (for
example, exponential [20]), used in ‘hopping’ theories of ac conductivity. Moreover, closely
disposed minima of potential are not required at all for our model. The principal peculiarity
of the model is the use of a distribution G(k) of force constants k, describing the ensemble
of the forces returning charges to their equilibrium positions (model DFC), unlike the use of
the probability distribution of charge carrier hops over barriers or the distribution of relaxation
times (model DRT). Within the framework of our model, the NCL regime is entirely stipulated
by the parameters of the random potential relief and is almost unrelated to the properties of
charge carriers. This circumstance can explain the similarity of parameters of the NCL regime
for many disordered substances. For example, the values of ε′′ for the NCL regime for a
large number of conducting glasses, melts, and crystals at various temperatures lie in a narrow
interval 3 × 10−3 < ε′′ < 2 [21]. Note that practically the same interval 10−3 < ε′′ < 10 is
occupied by values of ε′′ for various substances in the UDR regime [1, 2].

The temperature dependence of the dielectric response within the framework of the
presented model is determined by the temperature dependences G(k, T ), μ(T ), N0(T ) and
N1(T ). For solids, far from temperatures of phase transitions, the random potential, ‘frozen’ in
the lattice, weakly depends on temperature and accordingly G(k, T ) ≈ constant. The mobility
μ(T ) also usually depends on temperature much more weakly than N0(T ) and N1(T ), so the
temperature dependence of the dielectric response in such cases is conditioned mainly by the
temperature dependences of conductivities σdc(T ) and σ∞(T ). Close to temperatures of phase
transitions, the dielectric response will be strongly influenced by the temperature dependence
G(k, T ). This is of particular concern for substances with fuzzy phase transitions (relaxors)
in which the polar clusters are chaotically distributed. These clusters, originating at various
local Curie temperatures, have different compositions, sizes, electrical dipole moments and
activation energy, so the width and the shape of distribution of the potential fluctuations, related
to them, essentially depend on temperature.

If the average depth of minima of random potential is equal to ϕ̄min, then by using the
Boltzmann distribution N (ϕ) ∝ exp(−qϕ/kBT ) we obtain for the ratio of the density of the
charges, situated in potential minima, to the density of free charges

N1(T )

N0(T )
=

∫ ϕ̄min

0 exp(− qϕ

kBT ) dϕ∫ ∞
ϕ̄min

exp(− qϕ

kBT ) dϕ
= 1 − exp(− qϕ̄min

kBT )

exp(− qϕ̄min

kBT )
, (44)

or for the ratio of conductivities
σ∞(T )

σdc(T )
= N1(T ) + N0(T )

N0(T )
= exp

(
qϕ̄min

kBT

)
. (45)

This implies that if σdc follows the activation law σdc(T ) ∝ exp(−Ed/kBT ), the activation
energy for σ∞(T ) should be less by the value of qϕ̄min. This means that the temperature
dependences σdc(T ) and σ∞(T ) essentially differ, and σ∞(T ) depends on temperature more
weakly. This corresponds to the experimental data of [12, 21–23], according to which in the
NCL regime the conductivity σ ′(ω) = Aω has weaker temperature dependence than σdc. As
A ∝ N1(T ) (see (28), (36)), and σdc ∝ N0(T ) and usually N0 � N1, then σ∞ = (N0 + N1)qμ

is also proportional to N1. From (45) the average depth of random potential minima is expressed
in terms of experimentally determined σdc(T ) and σ∞(T ):

ϕ̄min = kBT

e
ln

(
σ∞(T )

σdc(T )

)
. (46)

If the mobility μ of the charge carriers in a substance is known, it will be possible to evaluate
also the width of distribution of transverse dimensions D(k) of potential fluctuations and an

11



J. Phys.: Condens. Matter 19 (2007) 086222 A I Ritus

interval of depth values of the parabolic wells, corresponding to the spectral range of NCL
ω1 = μk1 < ω < μk2 = ω2. If we suppose, for example, that all parabolic wells of
potential have depth close to ϕ̄min, then D(k) = 2xk , where xk is obtained from the equation
ϕ̄min = kx2

k /2; that is

D(k) = 2

√
2ϕ̄min

k
, (47)

and the transverse dimensions of the potential wells are in the interval

2

√
2μϕ̄min

ω2
< D < 2

√
2μϕ̄min

ω1
. (48)

On the contrary, if we suppose that the transverse dimensions of all potential wells are
approximately equal to D̄ (for example, equal to the average size of micrograins of ceramics)
it is analogously possible to calculate an interval of values of depth ϕmin of the parabolic wells,
corresponding to the spectral range ω1 < ω < ω2 of the NCL:

ω1 D̄2

8μ
< ϕmin <

ω2 D̄2

8μ
. (49)

3. Comparison of the model relationships with experimental data

The dielectric response within the framework of the presented model is determined by the
parameters N0, N1, q , μ, and boundaries k1 and k2 of the distribution G(k), corresponding to
the spectral area of the NCL ω1 = μk1 < ω < μk2 = ω2. However, for comparison with
experimental spectra it is more convenient to express the formulae for σ(ω) and ε(ω) in terms
of σdc = N0qμ, σ∞ = (N0 + N1)qμ, ω1 and ω2, especially because the parameters N0, N1,
q and μ are not always known. Then, for example, (24) and (26) for the case of Gaussian
distribution (20) with k0 = 0 take the form

σ ′(ω) = π
σ∞ − σdc

2

ω

ω2
exp

(
π

4

ω2

ω2
2

) (
1 − erf

(
ω

ω2

√
π

4

))
+ σdc, (50)

ε′(ω) = ε∞ + σ∞ − σdc

ε02ω2
exp

(
π

4

ω2

ω2
2

)
E1

(
π

4

ω2

ω2
2

)
, (51)

and (34) and (35) for the rectangular distribution (22) turn into

σ ′(ω) = σ∞ − σdc

ω2 − ω1
ω

[
arctan

(ω2

ω

)
− arctan

(ω1

ω

)]
+ σdc, (52)

ε′(ω) = ε∞ + σ∞ − σdc

2ε0(ω2 − ω1)
ln

(
ω2 + ω2

2

ω2 + ω2
1

)
. (53)

In (51) and (53), for generality we have substituted unity by the dielectric constant ε∞
presenting the integral contribution of high-frequency dispersion processes in ε′.

Now we will give several examples of experimental dielectric responses of various
substances and their descriptions within the framework of our model.

The work reported in [24] is one of few in which the regime of ‘new universality’ and
the plateau σ∞ are observed in conductivity spectra σ ′(ω) without the superposition of UDR
and other phenomena1. In this work the electrical properties of amorphous Se, As2Se3 and

1 In [10, 16], examples of experimental spectra σ ′(ω) with levelling off to the plateau σ∞ for several ionic conductors
are given, but procedures of removing vibrational or Debye components of the spectra were applied to reveal the
plateau.
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Figure 5. σ ′(ω) spectra for Se and As2Se3 at T = 300 K according to experimental data [24]
(circles and squares) and their fits using equation (52) of the proposed model with parameters given
in text (solid lines).
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Figure 6. ε′(ω) spectra for Se and As2Se3 at T = 300 K calculated by using equation (53) of
the proposed model with the same parameters as in figure 5 (solid lines), and experimental data
according to [24] (circles and squares).

As2S3 over the 102–3.6 × 1010 Hz frequency range were researched, and also the values
of σdc were measured. Figure 5 shows the experimental σ ′(ω) spectra for Se and As2Se3

at T = 300 K according to [24] (circles and squares) and our fitting curves, calculated by
formula (52) with ω1 = 0 (solid lines). Appropriate experimental values were taken for σ∞
and σdc, and the frequency ω2 was the unique fitting parameter (ω2/2π = 5.26 × 108 Hz,
σ∞ = 4.9×10−6 	−1 cm−1, σdc = 2.8×10−14 	−1 cm−1 for Se and ω2/2π = 1.63×109 Hz,
σ∞ = 6.9 × 10−5 	−1 cm−1, σdc = 1 × 10−12 	−1 cm−1 for As2Se3). ε′(ω) spectra for Se
and As2Se3, obtained by means of formula (53) with the above-stated parameters and with the
values ε∞, equated to experimental values of ε′ at frequency 3.6×1010 Hz are shown in figure 6.
Experimental points according to [24] in figure 6 are shown by circles and squares; note that the
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Figure 7. ε′(ω) and ε′′(ω) spectra for BNNT at T = 396 K according to [27] (circles and
squares) and their fits using the Cole–Cole expression (54) together with equations of the proposed
model (solid lines). Parameters are given in the text. Dashed lines shows fits using the Cole–Cole
expression only.

experimental errors at frequency 3.6 × 1010 Hz are much less than errors at lower frequencies.
In this figure the calculated curves within the limits of error coincide with experimental values;
that is, the contribution 
ε′ to the dispersion ε′ at frequencies below 3.6 × 1010 Hz is totally
described by our model of the Drude drift currents localized in random potential minima. It
is interesting that the contribution 
ε′ through higher conductivity σ∞ in As2Se3 is partly
compensated by greater frequency ω2, because in this amorphous substance, unlike Se, besides
the ‘frozen’ density fluctuations there are additional ‘frozen’ composition fluctuations, so the
spectra of potential heterogeneities and, accordingly, of values k are wider.

The hole mobility μp = 0.34 cm2 V−1 s−1 in Se and μp = 4.3 × 10−5 cm2 V−1 s−1 in
As2Se3 at T = 300 K were measured in [25] and [26], respectively. Using these data and
values of σ∞ and σdc, we calculated by means of (46) and (48) that in Se the average depth of
potential minima equals ϕ̄min ≈ 0.49 eV, and their transverse dimensions D lie in the interval
2000 Å < D < ∞, while in As2Se3 ϕ̄min ≈ 0.47 eV and 12.5 Å < D < ∞ (certainly, the
actual upper bounds are limited by the sizes of the samples).

The dielectric dispersion in Ba2NaNb5(1−x)Ta5x O15, x = 0.57 (BNNT) crystal was
investigated in [27]. The authors of [27] connected the dispersion ε in this crystal at frequencies
below 107 Hz to a soft relaxation mode and described it by the Cole–Cole expression

ε(ω) = ε∞ + ε(0) − ε∞
1 + (iωτ)1−α

, (54)

where τ is the average relaxation time, and α a parameter describing the distribution of
relaxation times. However, BNNT possesses significant conductivity, which should yield an
additional contribution in ε(ω). We have described this contribution according to our model by
formulae (52), (53) and ε′′(ω) = σ ′(ω)/(ωε0). Results of calculations of ε′(ω) and ε′′(ω) by
these formulae together with expression (54) for BNNT at 396 K are shown in figure 7 by solid
lines, and experimental data according to [27] are shown by circles and squares. Dashed lines
show the results of calculations without taking into account ac conductivity. The parameters
for the calculations ε∞ = 465, α = 0.26, 1/2πτ = 375 MHz and σdc = 5×10−7 	−1 cm−1 at
T = 396 K have been taken from [27], and the frequency ω2/2π = 1.4 MHz was determined
visually as the frequency where experimental points begin to deviate from the curve ε′(ω),
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Figure 8. ε′(ω) and ε′′(ω) spectra for (1 − x)SrTiO3–xSrMg1/3Nb2/3O3 with x = 0.03 at
T = 300 K (circles and squares) and their fits using equations of the proposed model (solid lines).
Parameters are given in text.

calculated according to (54). The value of conductivity σ∞ = 3 × 10−4 	−1 cm−1 was a
unique fitted parameter. Figure 7 demonstrates that our model well describes the NCL regime
and additional growth of ε′ with decreasing frequency in the 103–106 Hz range. Note that this
increment at frequency 103 Hz amounts to the enormous value 
ε′ ≈ 2900 at T = 396 K and
becomes negligible, according to [27], already at T = 410 K. Our explanation of this behaviour
is that on coming out of range of the fuzzy phase transition (TC = 382–402 K) the depth of
potential fluctuations sharply decreases and the density of the localized charge carriers, i.e. the
value of σ∞ ∼ 
ε′ (see (53)), also sharply decreases. Using values of σ∞ and σdc, by means
of (46) we found that at T = 396 K in BNNT crystal, investigated in [27], the average depth of
potential wells ϕ̄min ≈ 0.22 eV.

The dielectric properties of (1− x)SrTiO3–xSrMg1/3Nb2/3O3 solid solution ceramics with
x = 0.005–0.15 were studied in [28] in the 10–106 Hz frequency range. Giant dielectric
relaxation was observed in spectra at temperatures 150–300 K. Since in these substances there
are no ferroelectric phase transitions, the authors have suggested that the relaxation is connected
with a local charge compensation of Mg2+ and Nb5+ ions by free carriers or ionic lattice
vacancies. It is possible to explain the observed giant value of low-frequency permittivity
ε′ from the estimations of the authors, or by means of the Maxwell–Wagner model (at the
certain selection of electrodynamic parameters of ceramics grains), or by means of model of the
reorienting dipole centres consisting of Mg2+ ions associated with mobile oxygen vacancies.
We emphasize that both models are concerned with mobile charge carriers.

Our model of the Drude drift currents localized in random potential minima completely
describes the dielectric ε′ and ε′′ spectra of this giant relaxation. Figure 8 shows the
experimental ε′(ω) and ε′′(ω) spectra for (1 − x)SrTiO3–xSrMg1/3Nb2/3O3 ceramics with
x = 0.03 obtained by us in the 10 Hz–200 MHz frequency range at T = 300 K, and
the results for ε′(ω) and ε′′(ω) calculated according to our model’s formulae (52), (53) and
ε′′(ω) = σ ′(ω)/(ωε0). For the calculations, the spectra have been divided into two adjacent
segments, corresponding to the NCL area and the widened ‘Debye’ area.

The parameters in (52), (53) were the following: ω2/2π = 1.26×108 Hz, ω1/2π = 2.5×
106 Hz, σ∞ = 0.035 	−1 cm−1, ε∞ = 400 for the ‘Debye’ area and ω′

2/2π = 2.5 × 106 Hz,
ω′

1/2π = 0.1 Hz, σ ′∞ = 3.1 × 10−4 	−1 cm−1, σdc = 9 × 10−9 	−1 cm−1 for the NCL area.
Initial values of fitting parameters σ∞, σ ′∞, and σdc were taken from experimental data; that
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Figure 9. σ ′(ω) spectrum for (1 − x)SrTiO3–xSrMg1/3Nb2/3O3 with x = 0.03 at T = 300 K
(circles) and its fit using equation (52) of the proposed model with parameters given in text
(solid line). In the interval indicated by arrows, the curve slope correspond to σ ′(ω) ∝ ωs with
s = 1.007 ± 0.007.

is, σ∞ ≈ σ(126 MHz), σ ′∞ ≈ σ(2.5 MHz), σdc ≈ σ(10 Hz). Figure 8 demonstrates good
accordance of calculated curves and experimental points. Note that ε∞ = 400 is close to the
value ε′(2.5 cm−1) ≈ 320 for pure SrTiO3 obtained in [29] from infrared measurements. Since
our measurements were fulfilled with the help of different instruments in the 10–100 000 Hz
range (LCR meter Good Will LCR-819) and in the 1–200 MHz range (impedance meter HP
4191A), there is a small discrepancy in the experimental data. Besides, a parasitic resonance
of the circuit formed by the high sample capacitance in combination with a self-inductance
of the HP 4191A terminals has started to affect the spectra at highest frequencies. Figure 9
shows the experimental σ ′(ω) spectrum and the fitting curve calculated by (52) for the ceramics
investigated. In the interval indicated by arrows, σ ′(ω) ∝ ωs with s = 1.007 ± 0.007; that is,
the curve slope corresponds to the ‘new universality’ regime.

According to [30], the electron mobility in SrTiO3 is μe = 7.5 cm2 V−1 s−1 at T =
300 K. Using this value and the above-mentioned values σ∞ and σdc, we obtained by means
of (46), (48) and (47) that in (1 − x)SrTiO3–xSrMg1/3Nb2/3O3 ceramics with x = 0.03
the average depth of potential wells ϕ̄min ≈ 0.4 eV, their minimal transverse dimension
Dmin ≈ 1.7 μm and their most probable dimension, corresponding to the ‘Debye’ maximum,
DDeb ≈ 6 μm. These values agree with grain dimensions D ∼ 1–30 μm in samples of the
SrTiO3 and Bax Sr1−x TiO3 ceramics, manufactured by various technologies [31]. Note that
the quite moderate number of charge carriers N ≈ 3 × 1016 cm−3 corresponds to values
of parameters σ∞ = 0.035 	−1 cm−1 and μe = 7.5 cm2 V−1 s−1, nevertheless ensuring,
according to our model, a value of giant relaxation 
ε′ = 5000.

The quoted examples show that experimental data on the dielectric response of various
substances—amorphous, crystalline, ceramic solid solutions—are well described by our model
of the Drude drift currents localized in minima of the random potential.

4. Conclusion

A new model of the dielectric response of disordered substances is proposed. Within the
framework of this model, the dielectric response of disordered substances is stipulated by the
Drude drift currents localized in minima of the random electrostatic potential, ‘frozen’ in a
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substance. The random potential is caused by a static inhomogeneous charge distribution in the
disordered substance. Mobile charge carriers necessary for the model will always be present,
for example, owing to various uncontrollable impurities and defects in researched materials.
At the same time, because of the localization of charge carriers in deep enough minima of the
random potential, the dc conductivity can become extremely small, characteristic for ‘good’
dielectrics. The solution of the equation of motion for the Drude drift of a charge carrier with
mobility μ under the summary action of a field of local parabolic potential ϕ(x) = ϕmin+kx2/2
and an external alternating field shows that the appropriate dielectric response belongs to the
Debye type with ‘relaxation frequency’ ωr = μk. The use of distribution functions G(k)

for values k of local minima of a disordered inhomogeneous material allows us to describe
quantitatively both the frequency domains of the NCL (‘new universality’) and the cases of the
giant contribution to a low-frequency dielectric constant. Owing to summation of the Debye-
type responses, the model satisfies the Kramers–Kronig relations. The model equations are
fulfilled for ω � 1/τsc, where τsc is the Drude time between carriers’ scattering. The dielectric
response within the framework of the model is determined by densities of free and localized
charge carriers, their mobility and the distribution G(k) with boundaries k1 and k2 linearly
linked with the width of the NCL spectral range ω1 = μk1 < ω < μk2 = ω2. This model,
in our opinion, gives universal adequate representation of physical processes in any disordered
substances, whose dielectric response is phenomenologically described by the Debye frequency
dependence with a distribution of relaxation times (except for the Debye responses related to
dipole polarization). The principal feature of the model is the use of a distribution of force
constants k, G(k), describing the forces returning charge carriers to equilibrium positions
(model DFC), unlike the use of distribution of barrier heights, resulting in a distribution of
probabilities of charges hops w ∼ 1/τ within the limits of model of distribution of relaxation
times τ (model DRT).

The description of experimental dielectric spectra by means of the proposed model allows
evaluating such parameters of the random potential of disordered substances as ranges of static
field values, the geometrical sizes and depths of minima of potential fluctuations and their
average values.

In conclusion, we emphasize that the random potential of a disordered medium is a
common phenomenon for the explanation of ac conductivity both in the NCL regime and
in the UDR regime. The distribution of electrical fields in local minima of a mesoscale
potential determines the parameters of the NCL regime, while the distribution of energies of
barriers between local minima of atomic scale caused by the random potential determines the
parameters of the UDR regime.
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